Лабораторная работа № 12 Цель работы — провести структурный анализ и ознакомиться с основными свойствами кинематических цепей копирующего манипулятора и промышленных роботов. 12.1. Промышленные роботы и манипуляторы. Промышленный робот – программируемая автоматическая машина, состоящая из манипулятора и устройства программного управления его движением, предназначенная для замены человека при выполнении основных и вспомогательных операций в производственных процессах. Манипулятор – совокупность пространственного рычажного механизма и системы приводов, осуществляющая под управлением программируемого автоматического устройства или человека-оператора действия (манипуляции), аналогичные действиям руки человека. 12.2. Назначение и область применения. Промышленные роботы предназначены для замены человека при выполнении основных и вспомогательных технологических операций в процессе промышленного производства. При этом решается важная социальная задача - освобождения человека от работ, связанных с опасностями для здоровья или с тяжелым физическим трудом, а также от простых монотонных операций, не требующих высокой квалификации. Гибкие автоматизированные производства, создаваемые на базе промышленных роботов, позволяют решать задачи автоматизации на предприятиях с широкой номенклатурой продукции при мелкосерийном и единичном производстве. Копирующие манипуляторы, управляемые человеком-оператором, необходимы при выполнении различных работ с радиоактивными материалами. Кроме того, эти устройства незаменимы при выполнении работ в космосе, под водой, в химически активных средах. Таким образом, промышленные роботы и копирующие манипуляторы являются важными составными частями современного промышленного производства. 12.3. Классификация промышленных роботов. Промышленные роботы классифицируются по следующим признакам:
12.4.Принципиальное устройство промышленного робота. Манипулятор промышленного робота по своему функциональному назначению должен обеспечивать движение выходного звена и закрепленного в нем объекта манипулирования в пространстве по заданной траектории и с заданной ориентацией. Для полного выполнения этого требования основной рычажный механизм манипулятора должен иметь не менее шести подвижностей, причем движение по каждой из них должно быть управляемым. Промышленный робот с шестью подвижностями является сложной автоматической системой. Эта система сложна как в изготовлении, так и в эксплуатации. Поэтому в реальных конструкциях промышленных роботов часто используются механизмы с числом подвижностей менее шести. Наиболее простые манипуляторы имеют три, реже две, подвижности. Такие манипуляторы значительно дешевле в изготовлении и эксплуатации, но предъявляют специфические требования к организации рабочей среды. Эти требования связаны с заданной ориентацией объектов манипулирования относительно механизма робота. Поэтому оборудование должно располагаться относительно такого робота с требуемой ориентацией. Рассмотрим для примера структурную и функциональную схемы промышленного робота с трехподвижным манипулятором. Основной механизм руки манипулятора состоит из неподвижного звена 0 и трех подвижных звеньев 1,2 и 3 (рис.12.1). Структурная схема механизма этого манипулятора соответствует цилиндрической системе координат. В этой системе звено 1 может вращаться относительно звена 0 (относительное угловое перемещение j 10 ), звено 2 перемещается по вертикали относительно звена 1 (относительное линейное перемещение S 21 ) и звено 3 перемещается в горизонтальной плоскости относительно звена 2 (относительное линейное перемещение S 32 ). На конце звена 3 укреплено захватное устройство или схват, предназначенный для захвата и удержания объекта манипулирования при работе манипулятора. Звенья основного рычажного механизма манипулятора образуют между собой три одноподвижные кинематические пары (одну вращательную А и две поступательные В и С) и могут обеспечить перемещение объекта в пространстве без управления его ориентацией. Для выполнения каждого из трех относительных движений манипулятор должен быть оснащен приводами, которые состоят из двигателей с редуктором и системы датчиков обратной связи. Так как движение объекта осуществляется по заданному закону движения, то в системе должны быть устройства сохраняющие и задающие программу движения, которые назовем носителями программ. При управлении от ЭВМ такими устройствами могут быть дискеты, диски CD, магнитные ленты и др. Преобразование заданной программы движения в сигналы управления двигателями осуществляется системой управления. Эта система включает ЭВМ, с соответствующим программным обеспечением, цифроаналоговые преобразователи и усилители. Система управления, в соответствии с заданной программой, формирует и выдает на исполнительные устройства приводов (двигатели) управляющие воздействия u i . При необходимости она корректирует эти воздействия по сигналам D xi , которые поступают в нее с датчиков обратной связи. Функциональная схема промышленного робота приведена на рис. 12.2. ![]() 12.5. Основные понятия и определения. Структура манипуляторов. Геометро-кинематические характеристики. Формула строения - математическая запись структурной схемы манипулятора, содержащая информацию о числе его подвижностей, виде кинематических пар и их ориентации относительно осей базовой системы координат (системы, связанной с неподвижным звеном). ![]() Движения, которые обеспечиваются манипулятором делятся на:
В соответствии с этой классификацией движений, в манипуляторе можно выделить два участка кинематической цепи с различными функциями: механизм руки и механизм кисти. Под “рукой” понимают ту часть манипулятора, которая обеспечивает перемещение центра схвата – точки М ( региональные движения схвата); под “кистью” – те звенья и пары, которые обеспечивают ориентацию схвата (локальные движения схвата). Структурная схема механизма – его графическое изображение на котором показаны стойка, подвижные звенья, кинематические пары и их взаимное расположение. Графическое изображение элементов схемы выполняется с учетом принятых условных обозначений. В таблице 12.1 приведены условные обозначения кинематических пар. Кинематической цепью называется система звеньев, образующих между собой кинематические пары. Цепь в которой каждое звено входит не более чем в две кинематические пары, называется простой. Незамкнутой называется такая кинематическая цепь, в которой есть звенья входящие только в одну кинематическую пару. Таблица 12.1
Рассмотрим структурную схему антропоморфного манипулятора, то есть схему которая в первом приближении соответствует механизму руки человека (рис.12.3). Этот механизм состоит из трех подвижных звеньев и трех кинематических пар: двух трехподвижных сферических А3сф и С3сф и одной одноподвижной вращательной В1в . Кинематические пары манипулятора характеризуются: именем или обозначением КП - заглавная буква латинского алфавита (A,B,C и т.д.); звеньями, которые образуют пару (0/1,1/2 и т.п.); относительным движением звеньев в паре ( для одноподвижных пар - вращательное, поступательное и винтовое); подвижностью КП (для низших пар от 1 до 3, для высших пар от 4 до 5); осью ориентации оси КП относительно осей базовой или локальной системы координат. Рабочее пространство манипулятора - часть пространства, ограниченная поверхностями огибающими к множеству возможных положений его звеньев. Зона обслуживания манипулятора - часть пространства соответствующая множеству возможных положений центра схвата манипулятора. Зона обслуживания является важной характеристикой манипулятора. Она определяется структурой и системой координат руки манипулятора, а также конструктивными ограничениями наложенными относительные перемещения звеньев в КП. ![]() Подвижность манипулятора W - число независимых обобщенных координат однозначно определяющее положение схвата в пространстве. ![]() или для незамкнутых кинематических цепей. ![]() Маневренность манипулятора М - подвижность манипулятора при зафиксированном (неподвижном) схвате М = W - 6 . (12.3 ) Возможность изменения ориентации схвата при размещении его центра в заданной точке зоны обслуживания характеризуется углом сервиса - телесным углом y , который может описать последнее звено манипулятора (звено на котором закреплен схват) при фиксации центра схвата в заданной точке зоны обслуживания y = fC / lCM3 , (12.4 ) где fC - площадь сферической поверхности, описываемая точкой С звена 3, lCM - длина звена 3. Относительная величина ky = y / (4× p ), (12.5 ) называется коэффициентом сервиса. Для манипулятора, изображенного на рис.12.3, подвижность манипулятора W = 6× 3 - (3× 2 - 5× 1) = 18- 11 = 7; маневренность M = 7 - 6 = 1; формула строения W = [ q 10+ j 10 + y 10 ] + j 21 + [ q 32 + j 32 + y 32 ]. (12.6 ) ![]() Структура кинематической цепи манипулятора должна обеспечивать требуемое перемещение объекта в пространстве с заданной ориентацией. Для этого необходимо, чтобы схват манипулятора имел возможность выполнять движения минимум по шести координатам: трем линейным и трем угловым. Рассмотрим на объекте манипулирования точку М, которая совпадает с центром схвата. Положение объекта в неподвижной (базовой) системе координат 0x0y0z0 определяется радиусом-вектором точки М и ориентацией единичного вектора
Ориентация объекта в пространстве задается углами При структурном синтезе механизма манипулятора необходимо учитывать следующее:
![]() Рис 12.5
Перемещение схвата в пространстве можно обеспечить, если ориентировать оси первых трех кинематических пар по осям одной из осей координат. При этом выбор системы координат определяет тип руки манипулятора и вид его зоны обслуживания. По ГОСТ 25685-83 определены виды систем координат для руки манипулятора, которые приведены в таблице 12.2. Здесь даны примеры структурных схем механизмов соответствующие системам координат. Структурные схемы механизмов кисти, применяемые в манипуляторах, даны в таблице 12.3. Присоединяя к выходному звену руки тот или иной механизм кисти, можно получить большинство известных структурных схем манипуляторов, которые применяются в реальных промышленных роботах. Структура манипулятора определяется и местом размещения приводов. Если приводы размещаются непосредственно в кинематических парах, то к массам подвижных звеньев манипулятора добавляются массы приводов. Суммарная нагрузка на приводы и их мощность увеличиваются, а отношение массы манипулятора к полезной нагрузке (максимальной массе объекта манипулирования) уменьшается. Поэтому при проектировании роботов приводы звеньев руки, как наиболее мощные и обладающие большей массой, стремятся разместить ближе к основанию робота. Для передачи движения от привода к звену используются дополнительные кинематические цепи. Рассмотрим схему руки манипулятора ПР фирмы ASEA (рис.12.6). К трехзвенному механизму с ангулярной системой координат добавлены:
Таким образом, в рычажном механизме можно выделить кинематическую цепь руки (звенья 1,2 и 3) и кинематические цепи приводов. Манипуляторы использующие принцип размещения приводов на основании имеют более сложные механизмы. Однако увеличение числа звеньев и кинематических пар компенсируется уменьшением масс и моментов инерции, подвижных звеньев манипулятора. Кроме того, замкнутые кинематические цепи повышают точность и жесткость механизма. В целом манипуляторы, использующие принципы комбинированного размещения приводов (часть приводов на основании, часть на подвижных звеньях), обладают лучшими энергетическими и динамическими характеристиками, а также более высокой точностью. ![]() Системы координат “руки” манипулятора. Таблица 12.2
Таблица 12.3
В кинематических схемах рассмотренных манипуляторов веса звеньев вызывают дополнительную нагрузку на приводы. Фирма SKILAM разработала робот SANCIO ( рис. 12.7) в котором веса приводов и звеньев воспринимаются кинематическими парами, а на момент двигателей влияют только через силы трения. Такая структурная схема механизма потребовала увеличения размеров кинематических пар, однако в целом был получен существенный выигрыш по энергетическим и динамическим показателям. Важная особенность манипуляторов – изменение структуры механизма в процессе работы, о чем говорилось на лекции по структуре механизмов. В соответствии с циклограммой или программой работы робота, в некоторых кинематических парах включаются тормозные устройства. При этом два звена механизма жестко соединяются с друг другом, образуя одно звено. Из структурной схемы механизма исключается одна кинематическая пара и одно звено, число подвижностей схвата механизма уменьшается (обычно на единицу). Изменяется структура механизма и в тех случаях, когда в процессе выполнения рабочих операций (на пример, при сборке или сварке) схват с объектом манипулирования соприкасается с окружающими предметами, образуя с ними кинематические пары. Кинематическая цепь механизма замыкается, а число подвижностей уменьшается. В этом случае в цепи могут возникать избыточные связи. Эти структурные особенности манипуляторов необходимо учитывать при программировании работы промышленного робота.
Для рассматриваемых манипуляторов провести структурный и кинематический анализ механизма выполнив при этом следующее:
12.8. Пример структурного и кинематического анализа В качестве примера рассмотрим структурный и кинематический анализ манипулятора робота Unimate . Структурная схема механизма изображена на рис.12.8. Заполним таблицы лабораторного журнала. После заполнения таблицы сделаем вывод, который для данной схемы можно сформулировать так: Манипулятор Unimate является шестиподвижным пространственным механизмом со сферической системой координат и разомкнутой кинематической цепью. 12.9. Порядок выполнения лабораторной работы
Сделать выводы по работе указав в них число подвижностей манипулятора, систему координат, вид кинематической цепи. Формулы строения манипуляторов промышленных роботов Таблица 12.4
Структурная схема манипулятора
Рис. 12.8 Основные параметры структурной схемы манипулятора
|