ОГЛАВЛЕНИЕ

Введение	2
1. Моделирование электрических цепей синусоидального тока	2
1.1 Основные теоретические сведения	2
1.2 Модели основных элементов электрических цепей синусоидального тока	7
1.3 Создание и анализ электрических схем синусоидального тока	11
2. Частотный анализ линейных электрических цепей	15
2.1 Комплексный коэффициент передачи и частотные характеристики линейных	
электрических цепей.	15
2.2 Задание параметров и расчет частотных характеристик.	16
3. Моделирование переходных процессов	18
3.1 Краткие теоретические сведения	18
3.2 Задание параметров анализа переходных процессов	19
Список литературы.	22
1 21	

Введение

функциональных возможностей электрических и электронных Расширение устройств их усложнение привело к необходимости применения при проектировании современных средств информационных технологий. В настоящее время разработано множество математического моделирования И автоматизированного систем проектирования, обладающих широкими возможностями как по виду анализа (частотный и параметрический анализ, анализ переходных процессов) так и размерности исследуемой системы. Одним из широко используемых пакетов является пакет Electronics Workbench (в настоящее время пакет Multisim). Пакет содержит библиотеки математических моделей основных элементов электрических и электронных цепей, позволяет проводить моделирование электрических цепей синусоидального тока, частотный анализ, расчет переходных процессов. Пакет может быть использован в учебном процессе в соответствии с программой учебных дисциплин «Теоретические основы электротехники», «Теория электрических цепей» и «Электротехника» в качестве учебного пособия для виртуальной компьютерной лаборатории. Учебное пособие предназначено для студентов изучающих раздел «Анализ линейных электрических цепей».

1. Моделирование электрических цепей синусоидального тока

1.1 Основные теоретические сведения

В электрических цепях синусоидального тока *мгновенное значение* тока определяется выражением

$$I(t) = I_{\rm m} \sin(\omega t + \psi), \qquad (1.1)$$

где *I*_m – *амплитудное значение* синусоидального тока;

 $\omega = 2\pi f - \kappa p y говая$ или угловая частота ($f = 1/T - частота \Gamma \mu$, T - период);

ψ – начальная фаза или просто *фаза* синусоидального тока.

При анализе процессов во времени фаза у синусоидальной величины (1.1) определяет опережение (положительное значение) или запаздывание (отрицательное значение) процесса во времени. Синусоидальная величина может быть представлена во

временной области (рис. 1.1а) и в виде вектора, вращающегося в декартовой системе координат против часовой стрелки с угловой скоростью ω (рис. 1.1b).

Длина вектора определяет амплитуду синусоидальной величины, а его проекция на ось у в каждый момент времени соответствует мгновенному значению (1.1). Синусоидальный ток или напряжение при неизменной частоте может быть представлен вектором на плоскости. Изображение для некоторой электрической цепи токов и напряжений в виде векторов на плоскости называется *векторной диаграммой*. Векторы могут также быть представлены в виде комплексного числа $I = I_{Re} + j I_{Im}$, где I_{Re} – проекция вектора на действительную ось; I_{Im} – проекция вектора на мнимую ось. Величину I называют *комплексом*. В экспоненциальной форме ее можно записать в виде $I = Ie^{j\Psi}$. В этом случае величина I определяется с помощью амплитудного значения

$$I_m = \sqrt{I_{\rm Re}^2 + I_{\rm Im}^2},$$

фазу можно определить из следующих соотношений

$$\psi = \operatorname{arctg}\left(\frac{I_{\operatorname{Re}}}{I_{\operatorname{Im}}}\right).$$

Действующее значение синусоидального тока I – это такое значение постоянного тока, который вырабатывает мощность, равную средней мощности синусоидального тока на периоде. Действующие значения синусоидальных величин в $\sqrt{2}$ раза меньше амплитудных значений

$$I = \frac{I_m}{\sqrt{2}}, \quad U = \frac{U_m}{\sqrt{2}}, \quad E = \frac{E_m}{\sqrt{2}}.$$
 (1.2)

Сдвиг фаз (угол ф) между напряжением и током – это алгебраическая величина, определяемая вычитанием начальной фазы синусоидального электрического тока из начальной фазы синусоидального электрического напряжения

$$\varphi = \psi_u - \psi_I \,. \tag{1.3}$$

Мгновенная мощность для участка цепи (двухполюсника) равна скорости поступления электромагнитной энергии в рассматриваемый момент времени, вычисляется как произведение мгновенных значений электрического напряжения и электрического тока:

$$p(t) = u(t) \cdot i(t) = U_{\rm m} \sin(\omega t) \cdot I_{\rm m} \sin(\omega t - \varphi) =$$
(1.4)
= $UI \cos(\varphi)(1 - \cos(2\omega t)) + UI \sin(\varphi) \sin(2\omega t).$

Полная мощность равна произведению действующих значений электрического напряжения и электрического тока

$$S = UI, \quad (B \cdot A). \tag{1.5}$$

Активная мощность равна среднеарифметическому значению мгновенной мощности за период

$$P = U \cdot I \cos(\varphi), \quad (BT). \tag{1.6}$$

Реактивная мощность равна произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током

$$Q = U \cdot I \sin(\varphi), \quad (Bap). \tag{1.7}$$

Между полной, активной и реактивной мощностью (1.5) – (1.7) существует связь

$$S = \sqrt{P^2 + Q^2}$$
 (1.8)

Соотношение (1.21) представляют в виде треугольника мощностей (рис. 1.2).

Коэффициент мощности – (соsф) скалярная величина, равная отношению активной мощности

двухполюсника к полной мощности.

S = UI φ $P = UI\cos(\varphi)$ $Q = UI\sin(\varphi)$

Рис. 1.2. Треугольник мощностей

Комплексная мощность для участка цепи равна произведению комплексного действующего значения синусоидального электрического напряжения и сопряженного комплексного действующего значения синусоидального тока. Действительная часть комплексной мощности равна активной, а мнимая часть реактивной мощности

$$\underline{S} = \underline{UI}^* = P + jQ. \tag{1.9}$$

4

Для пассивного двухполюсника введены следующие параметры:

полное электрическое сопротивление, равное отношению действующего значения синусоидального напряжения на выводах двухполюсника к действующему значению синусоидального электрического тока через двухполюсник:

$$Z = U/I, \tag{1.10}$$

активное электрическое сопротивление равно отношению активной мощности, поглощаемой в двухполюснике, к квадрату действующего тока, протекающего через двухполюсник:

$$R = P/I^2 , \qquad (1.11)$$

реактивное сопротивление равно квадратному корню из разности квадратов полного и активного электрических сопротивлений, взятому со знаком плюс, если электрический ток по фазе отстает от напряжения, и со знаком минус, если напряжение отстает по фазе от тока:

$$X = \sqrt{Z^2 - R^2} \,. \tag{1.12}$$

Комплексное сопротивление для участка цепи равно отношению комплексного напряжения на ее выводах к комплексному действующему значению синусоидального тока через этот участок:

$$\underline{Z} = \underline{U}/\underline{I} = R + jX.$$
(1.13)
Взаимосвязь между полным,
активным и реактивным сопротивлением
(1.10) – (1.12) наглядно представляется
графически в виде треугольника
 \tilde{X} (1.2)

Рис. 1.3. Треугольник сопротивлений

Полная электрическая проводимость двухполюсника – это величина, равная отношению действующего значения синусоидального тока электрического тока к действующему значению синусоидального напряжения на выводах двухполюсника

сопротивлений (рис. 1.3).

$$Y = I/U. \tag{1.14}$$

Активная проводимость – это величина, равная отношению активной мощности, поглощаемой в двухполюснике, к квадрату действующего значения синусоидального напряжения на его выводах

$$G = P/U^2. \tag{1.15}$$

5

Комплексная электрическая проводимость – это величина, равная отношению комплексного действующего значения синусоидального электрического тока в пассивной электрической цепи к комплексному действующему значению синусоидального электрического напряжения на выводах этой цепи:

$$\underline{Y} = \underline{I}/\underline{U} = G - jB. \tag{1.16}$$

Мнимая часть комплексной электрической проводимости *В* называется *реактивной проводимостью*.

Взаимосвязь между полной, активной и реактивной проводимостью (1.14) – (1.16) представляют графически треугольником проводимостей (рис. 1.4).

Рис. 1.4. Треугольник проводимостей

Линейные элементы электрических цепей в комплексной области описываются следующим образом. При синусоидальном напряжении на резисторе ток по фазе совпадает с напряжением (рис. 1.5).

Комплексное значение сопротивления для резистора

 $R \stackrel{\underline{I}}{\bigsqcup} \underbrace{\underline{U}}_{\underline{U}} \qquad \underbrace{\underline{I}}_{\underline{U}=R\underline{I}}$

 $\underline{Z}_{R} = R$. Тогда $\underline{U} = RI$.

Рис. 1.5. Ток и напряжение на резисторе

Угол сдвига фаз между напряжением и током на резисторе равен нулю $\phi = 0$. Активная, реактивная и полная мощность соответственно равны $P = RI^2$, Q = 0, S = P.

При синусоидальном напряжении ток идеального индуктивного элемента по фазе отстает от напряжения на $\pi/2$ (рис. 1.6).

Тогда

$$\underline{Z}_{L} = jX_{L} = j\omega L, \quad \underline{U} = jX_{L} \underline{I}, \quad \varphi = \pi/2.$$

Активная, реактивная и полная мощность соответственно равны

$$P = 0, Q = X_{\rm L} I^2, S = Q.$$

Рис. 1.6. Ток и напряжение на

индуктивном элементе

При синусоидальном напряжении на идеальном емкостном элементе ток по фазе опережает напряжение на $\pi/2$ (рис. 1.7).

6

$$P = 0, Q = -X_{\rm C} I^2, S = Q.$$

Рис. 1.7. Ток и напряжение на емкостном

элементе

1.2 Модели основных элементов электрических цепей синусоидального тока

В библиотеках моделей пакета Electronics Workbench имеются модели синусоидальных источников напряжения и тока, модели линейных элементов резистора, индуктивного элемента, емкостного элемента.

Синусоидальные источники ЭДС и синусоидальные источники тока – это такие источники электрической энергии, параметры которых изменяется по синусоидальному закону

$$e(t) = E_m \sin(\omega t + \psi),$$

$$J(t) = J_m \sin(\omega t + \psi).$$

Модели синусоидальных источников находятся в библиотеке "Sources". Независимые синусоидальные источники напряжения и тока находятся в четвертой и пятой позиции в верхней строке набора блоков (рис. 1.8).

Рис. 1.8. Панель набора элементов "Sources"

Изображение источника ЭДС и окно для задания его параметров приведены на рис. 1.9. Окно для задания параметров открывается, если щелкнуть два раза левой кнопкой мыши на изображении источника. Задаются: Voltage – напряжение, Frequency – частота; Phase – фаза.

1	AC Voltage Source Properties ?X
	C Voltage Source Properties ? × Label Value Fault Display Analysis Setup Voltage (V): ? V * Frequency: 50 Hz * Phase: 0 Deg Voltage tolerance: Global % V Use global tolerance
	ОК Отмена

Рис. 1.9. Изображение источника ЭДС и окно для задания его параметров.

Изображение источника тока и окно параметров приведены на рис. 1.10.

	AC Current Source	e Properties	;	?×
	Label Value Fau	ult Display	Analysis Setu	PI (
	Current (I): Frequency: Phase:	1	A +	
\leftrightarrow 1 A/1 Hz/0 Deg	Current tolerance:	Global	%	I✓ Use global tolerance
				ОК Отмена

Рис.1.10. Изображение и окно для задания параметров источника тока

В окне задаются параметры: Current – ток; Frequency – частота ; Phase – фаза.

Линейные элементы электрических цепей находятся в библиотеке "Basic" (рис. 1.11).

Рис. 1.11. Библиотека моделей основных элементов "Basic"

Изображение и окно параметров для линейного резистора приведены на рис. 1.12.

	Resistor Properties				?×
	Label Value Fault Display Analysis Se	etup			
1 k Ohm	Resistance (R): First-order temperature coefficient (TC1): Second-order temperature coefficient (TC2): Resistance tolerance:	I I 0 I 0 I Global 2	kΩ 불 /*C /*C %	I Use global	tolerance
	2			ОК	Отмена

Рис. 1.12. Изображение резистора и окно параметры

Для индуктивного элемента изображение и окно параметров приведены на рис. 1.13.

	Inductor Properties	×
	Label Value Fault Display	
ر 1 mH	Inductance (L): Inductance tolerance: Global & Vise global tolerance	
	ОК Отмена	

Рис. 1.13. Изображение и окно параметров индуктивного элемента. Для емкостного элемента изображение и окно параметров приведены на рис. 1.14.

	Capacitor Properties ?×
	Label Value Fault Display
<u>−</u> 1 uF	Capacitance (C): Capacitance tolerance: Global ≈ Use global tolerance
	ОК Отмена

Рис. 1.14. Изображение и окно параметров емкостного элемента

Для моделирования цепей с взаимоиндукцией в библиотеке "Basic" имеется модель идеального трансформатора. Изображение и окно параметров, которое появляется после выбора на вкладке Model модели Ideal, приведены на рис. 1.15. Задаются: *N* – коэффициент трансформации; LE – индуктивность рассеивания; Lm – взаимная индуктивность; RP – активное сопротивление первичной обмотки; RS – активное сопротивление вторичной обмотки.

	Transformer Model 'ideal'	?×
	Sheet 1	1
fund Ann	Primary-to-secondary turns ratio (N): Leakage inductance (LE): Magnetizing inductance (LM): Primary winding resistance (RP): Secondary winding resistance (RS):	0.001 H 5 H 1e-06 H
	[ОК Отмена

Рис. 1.15. Модель трансформатора

1.3 Создание и анализ электрических схем синусоидального тока

При вызове пакета Electronics Workbench на экране монитора появляется окно на рабочем поле, которого создается и редактируется принципиальная электрическая схема (рис. 1.16).

Рис. 1.16. Окно для создания и редактирования электрической схемы

В верхней части окна расположена строка меню команд и ниже инструментальная панель. Для создания схемы исследуемого устройства с использованием графического редактора из групп элементов выбирают необходимые компоненты и измерительные приборы, размещают их на рабочем поле и соединяют в соответствии с электрической схемой. Команды меню сгруппированы в разделы:

File – команды для выполнения различных операций с файлами;

Edit – команды редактирования электрических схем;

Circuit – команды для выбора параметров элементов электрических схем;

Analysis – команды для задания параметров и выполнения различных видов анализа электрических схем;

Windows – команды для настройки рабочего окна;

Help – команды позволяющие получить справочную информацию.

Наиболее распространенные команды можно выполнить путем нажатия соответствующих кнопок расположенных на инструментальной панели. Доступ к

библиотекам элементов электрических схем производиться с помощью кнопок на панели расположенной над рабочим полем.

Для создания на рабочем поле принципиальной схемы устройства необходимо произвести следующие действия:

- выбор элементов из библиотеки и их размещение на рабочем поле;
- выбор и размещение символов контрольно-измерительных приборов;
- соединение элементов и приборов с помощью проводников;
- задание параметров элементов и измерительных приборов.

Для выбора и размещения изображений элементов на рабочем поле необходимо выполнить следующие действия: в строке доступа к библиотекам (см. рис. 1.16) нажать (щелкнуть левой кнопкой мыши) на кнопке соответствующей группы элементов. В открывшейся панели с изображениями элементов выбрать требуемую модель (см. рис. 1.8, 1.9); затем нажатием левой кнопки мыши выбрать требуемый элемент и нажав левую кнопку мыши его изображение переместить на рабочее поле; параметры элементов задаются в диалоговом окне, для вызова которого следует произвести двойной щелчок левой кнопкой мыши на изображении элемента.

Изображения элементов можно перемещать и поворачивать. Для перемещения элемента его выделяют с помощью щелчка левой кнопки мыши (изображение приобретает красный цвет) и перетаскивают в нужное место. Поворот изображения элемента производят выделяя его левой кнопкой мыши, а затем, щелкнув на нем правой кнопкой в открывшемся контекстном меню выбирают команду Rotate. Таким образом, на рабочем поле размещают все элементы и приборы в соответствии с принципиальной схемой.

Для выполнения соединения выводов элементов следует установить курсор на одном из выводов элемента, должна появится черная точка и, нажав левую кнопку мыши провести соединение к другому выводу до появления точки. При соединении элементов проводник идентифицируется с одним узлом. При необходимости можно задать режим при котором номера узлов указываются на рабочем поле. Для этого в команде меню Schematic Options/Show/Hide задать режим Show nodes.

К проводнику, соединяющему два вывода можно подключить еще проводник. Для этого от вывода некоторого элемента проводник подводится к указанному проводнику, и после появления точки кнопка мыши отпускается.

В случае если необходимо удалить с рабочего поля один из элементов, необходимо отсоединить от его выводов проводники. Для этого каждый проводник выделяют (щелчок на нем левой кнопки мыши), открывают контекстное меню (щелчком правой кнопки мыши) и удаляют, выполнив команду "delete".

В результате выполнения операций размещения элементов и соединения их выводов на рабочем поле получается изображение схемы эксперимента с изображениями элементов и соединениями узлов. Готовую схему можно сохранить под оригинальным именем командой "File\Save As".

Измерение токов и напряжений в схеме осуществляется с помощью виртуальных вольтметра и амперметра (блоки с символами V и A), входящих в группу "Indicators" (рис. 1.17)

🗖 Indicat	Drs						×
V A		۲	8	8	<u>;</u>	a	

Рис. 1.17. Панель набора элементов "Indicators"

Вольтметры и амперметры обеспечивают измерение постоянного или переменного напряжения и тока. Параметры вольтметра и амперметра задаются в диалоговом окне, можно задать внутреннее сопротивление и характер измеряемой величины – постоянного (DC) или переменного (AC) тока. При измерении синусоидальных величин приборы показывают их действующие значения.

В наборе блоков "Instrumtnts" (рис. 1.18) имеется виртуальный осциллограф (Oscilloscope, третий слева), предназначенный для визуального наблюдения напряжений в электрической схеме.

Instruments	X

Рис. 1.18. Панель набора элементов "Instruments"

Для работы с прибором производят двойной щелчок левой кнопки мыши на его схемном изображении, раскрывается передняя панель прибора с экраном осциллографа и органами управления. Осциллограф имеет два независимых канала для одновременного наблюдения и регистрации двух напряжений относительно общей точки. Два входа осциллографа подключают к узлам исследуемой цепи вольтметрам, а третий вход подсоединяется к земле.

Рис. 1.19. Передняя панель осциллографа

Передняя панель осциллографа содержит экран прибора и органы управления (рис. 1.19). При помощи органов управления расположенных в нижней части панели можно устанавливать масштаб каналов А и В (Channel A, Channel B) по оси Ү. Изображение сигналов каналов А и В можно смещать, вертикально устанавливая значение в соответствующих окнах (Y position). В нижней части панели можно задать режим работы входной цепи канала: DC – на экране выводится исходный сигнал; АС – на экран выводится только переменная составляющая сигнала; 0 – входное напряжение канала равно нулю.

Развертка по оси X устанавливается при нажатой кнопке Y/T заданием значения в окне Time base. При наблюдении сигналов размер передней панели и соответственно экрана можно увеличить нажатием кнопки "Expand". Измерять параметры сигнала (амплитуду и фазу) удобно с помощью курсоров (рис. 7), которые можно передвигать по экрану вправо и влево. Имеются два курсора, что позволяет измерять разность амплитуд и фаз двух сигналов. Для работы с курсорами необходимо подвести курсор мыши на красный (или синий) треугольник, расположенный вверху экрана. Нажав левую кнопку мыши, курсор перемещают по экрану, при этом в окнах под экраном выводятся время и значение сигнала. При измерениях с помощью двух курсоров следует зафиксировать

изображения сигналов, нажав кнопку "Pause", расположенную в верхней части экрана над рабочим полем.

После создания схемы устройства, задания параметров и присоединения измерительных приборов, можно приступить к ее моделированию. Начало моделирования

задается установкой переключателя в положение "I", что производится левой кнопкой мыши. При этом одновременно включаются все источники и измерительные приборы. Остановка моделирования производится установкой переключателя в положение «0». Если при моделировании необходимо сделать паузу, то следует нажать на кнопку reaction в нажатие приводит к продолжению моделирования.

2. Частотный анализ линейных электрических цепей

2.1 Комплексный коэффициент передачи и частотные характеристики линейных электрических цепей.

При частотном анализе линейных электрических цепей используется понятие о комплексной передаточной функции. Комплексная передаточная функция равна отношению комплекса установившегося синусоидального выходного напряжения или тока к комплексу входного синусоидального напряжения или тока. Комплексная передаточная функция может иметь размерность сопротивления, проводимости, являться безразмерной. Комплексная передаточная функция является функцией комплексной частоты *j* ω . Передаточная функция по напряжению равна отношению комплексов выходного к входному напряжению $K_u(j\omega) = U_{\text{вых}}(j\omega)/U_{\text{вх}}(j\omega)$. (2.1)

Зависимость модуля комплексной передаточной функции (2.1) от частоты ω

$$A(\omega) = |K_{u}(j\omega)| = |U_{Bbix}(j\omega)/U_{Bx}(j\omega)| = |U_{Bbix}(j\omega)|/|U_{Bx}(j\omega)|, \qquad (2.2)$$

называют амплитудной частотной характеристикой (АЧХ), а зависимость аргумента комплексной передаточной функции от частоты ω

$$\theta(\omega) = \operatorname{Arg}(K_{u}(j\omega)) = \operatorname{Arg}(U_{BLIX}(j\omega)/U_{BX}(j\omega)) = \operatorname{Arg}(U_{BLIX}(j\omega)) - \operatorname{Arg}(U_{BX}(j\omega)), \quad (2.3)$$

называют фазовой частотной характеристикой (ФЧХ). Обычно амплитудно-частотную и фазочастотную характеристики (2.2), (2.3) представляют в виде графиков. По оси абсцисс откладывают частоту, при этом используют масштаб линейный либо логарифмический (по основанию 10 или 2). Используется также логарифмическая амплитудная частотная характеристика (ЛАЧХ) $L(\omega) = 20 \lg A(\omega)$, в этом случае коэффициент передачи измеряется в децибелах. Соотношения между коэффициентами $A(\omega)$ и $L(\omega)$ приведено в таблице 1.

Таблица 1

$A(\omega)$	$1/\sqrt{2}$	1/2	1/10	1/100	1/100
<i>L</i> (ω), дб	-3	-6	-20	-40	-60

Также на практике функцию $K_u(j\omega)$ представляют в виде

$$K_{\rm u}(j\omega) = U(\omega) + jV(\omega), \qquad (2.4)$$

годограф этой функции на плоскости в координатах (U, V) при изменении частоты от $\omega = 0$ до $\omega = \infty$ называют амплитудно-фазовой частотной характеристикой (2.4) (АФЧХ). Для цепей первого порядка (содержащих один индуктивный или емкостной элемент) АФЧХ представляет собой прямую линию или полуокружность.

2.2 Задание параметров и расчет частотных характеристик.

Частотный анализ устройства производится после того, как с помощью

графического редактора на рабочем поле построена электрическая схема и заданы параметры ее элементов. Для задания режима частотного анализа этого следует открыть меню "Analysis" и выбрать режим AC Frequency (рис. 2.1).

Рис. 2.1. Вкладка меню Analysis для задания вида моделирования

После этого откроется окно для задания параметров частотного анализа (рис. 2.2).

В окне задается: Start Frequency – начальная частота; «End Frequency» – конечная частота анализа; Number of points – количество вычисляемых точек частотной характеристики; Sweep type – масштаб по оси частот (можно задать Linear – линейный масштаб, Decade – логарифмический масштаб по основанию 10, Octave – логарифмический масштаб по основанию 2);

Vertical scale – масштаб по оси напряжений (можно задать масштаб Linear – линейный, Log – логарифмический по основанию 10, Decibel – в децибелах). В окне Nodes in circuits выбираются узлы схемы и кнопкой Add переносятся в окно Nodes of analysis, в котором указываются узлы для частотного анализа.

Analysis Window Help	
Activate	Ctrl+G
Pause	F9
Stop	Ctrl+T
Analysis Options	Ctrl+Y
DC Operating Point	
DC Sweep	
AC Frequency	
Transient	
Fourier	
Noise	
Distortion	
Parameter Sweep	
Temperature Sweep	
Pole-Zero	
Transfer Function	
Sensitivity	
Worst Case	
Monte Carlo	
Display Graphs	

AC Frequency Analysis			×
Analysis Start frequency (FSTART) End frequency (FSTOP) Sweep type Number of points Vertical scale	10 Linear V 100 Linear V	Hz ×	Simulate Accept Cancel
Nodes in circuit 2 V1#branch K- Re	Nodes 1->	for analysis	

Рис. 2.2. Окно для задания параметров частотного анализа

Частотный анализ выполняется после нажатия кнопки Simulate. Выполняется моделирование схемы и появляется окно Analysis Graphs с результатами расчета (рис. 2.3).

Рис. 2.3. Окно для вывода результатов расчета частотных характеристик

При частотном анализе устройства в широкой полосе частот и целесообразно выбрать логарифмические масштабы по осям. Для более точного измерения можно использовать сетку (нажать в окне кнопку Toggle Grid) или использовать перемещаемые курсоры (нажать кнопку Toggle Cursors) и связанную с их положением таблицу. Переключение курсоров на верхний или на нижний график осуществляется щелчком левой кнопки мыши на соответствующем графике.

3. Моделирование переходных процессов

3.1 Краткие теоретические сведения

Переходный процесс это электромагнитный процесс, возникающий в электрической цепи при переходе от одного установившегося режима к другому. Переходные процессы в электрической цепи возникают вследствие изменения параметров элементов цепи, отключения и подключения ветвей, включения или отключения источников питания. При анализе переходных процессов используют два закона коммутации. По первому закону ток и потокосцепление в индуктивном элементе в момент коммутации t = 0 не могу измениться скачком

$$\psi_L(0_-) = \psi_L(0_+), \ i_L(0_-) = i_L(0_+),$$
 (3.1)

по второму закону напряжение и заряд на емкостном элементе в момент коммутации не могут измениться скачком $q_C(0_-) = q_C(0_+), \ u_C(0_-) = u_C(0_+).$ (3.2)

Токи индуктивных и напряжения емкостных элементов называют переменными состояния электрической цепи, поскольку их начальное состояние полностью определяют энергетическое состояние и переходной процесс в электрической цепи при заданных входных воздействиях.

Переходные процессы в электрических цепях можно представить в виде двух составляющих установившейся и свободной. Установившаяся составляющая представляет собой периодический или постоянный электрический ток, устанавливающийся в электрической цепи после окончания переходного процесса при воздействии на цепь периодических или постоянных электродвижущих сил или напряжений. Свободная составляющая представляет собой разность переходного процесса и установившейся составляющая представляет собой разность переходного процесса и установившейся составляющей. Форма свободной составляющей зависит от начальных условий на реактивных элементах цепи и корней характеристического уравнения. Если корни характеристического уравнения действительные и разные, то свободная составляющая представляет собой суперпозицию функций $A_1e^{p_1t}$, $A_2e^{p_2t}$, ..., $A_ne^{p_nt}$. Если корни действительные кратные, то свободная включает суперпозицию функций $A_1e^{p_1t}$, $A_2t e^{p_2t}$, ..., $A_nt^{n-1}e^{p_nt}$. Для случая комплексных корней

 $p_{1,2} = \alpha \pm j\beta$ слагаемые свободной составляющей решения имеют вид $A_1 e^{\alpha t} \cos\beta t$, $A_1 e^{\alpha t} \sin\beta t$.

Постоянная времени τ это величина, характеризующая электрическую цепь, в которой свободная составляющая электрического тока является экспоненциальной функцией времени, равная интервалу времени, в течении которого электрический ток убывает в *е* раз. Обычно принимается, что длительность переходного процесса равна $(3 - 4)\tau$. Для цепей первого порядка постоянная времени равна $\tau = 1/|p|$. В случае комплексных корней постоянная времени равна $\tau = 1/|\alpha|$. Для простой последовательной *R*–*C* цепи первого порядка постоянная времени равна $\tau = RC$. Для последовательной *L*–*R* цепи постоянная времени равна $\tau = L/R$.

Для последовательной R-L-C цепи переходный процесс в зависимости от параметров цепи может быть апериодическим или колебательным. Если $R > 2\sqrt{L/C}$, то процесс апериодический. Если $R < 2\sqrt{L/C}$ процесс колебательный. При $R = 2\sqrt{L/C}$ режим называют критическим. Постоянная времени в случае равна $\tau = 2L/R$.

Частота свободных колебаний равна
$$\omega_{cB} = \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}$$

3.2 Задание параметров анализа переходных процессов

При анализе переходных процессов в меню Analysis выбирается вид анализа Transient. Параметры анализа задаются в окне, приведенном на рис. 3.1.

Transient Analysis		×
Initial conditions		Simulate
C User-defined		Accept
 Calculate DC operating point 		Cancel
Analysis]
Start time (TSTART)	0 s	
End time (TSTOP)	0.001 s	
 Generate time steps automatical Minimum number of time points Maximum time step (TMAX) 	100 1e-05 %	
Set plotting increment Plotting increment (TSTEP)	1e-05 s	
Nodes in circuit	Nodes for analysis	
2 3 <- Remove	1	

Рис. 3.1. Окно для задания параметров режима Transient Analysis

В секции Initial conditions указывается способ определения начальных условий: «Set to Zero» – задаются нулевые начальные условия; «Users-defined» – начальные условия задаются пользователем; «Calculated DC operating point» – перед анализом переходного процесса начальные условия определяются из расчета цепи по постоянному току. В секции Analysis задают время начала анализа «Start Time» и время окончания анализа «End Time».

Кроме того, в нижней части панели в левом окне «Nodes in Circuit» из перечня номеров узлов необходимо выбрать узлы для анализа и с помощью кнопки Add переместить в окно «Nodes for Analysis». Для моделирования различных коммутаций в электрической цепи целесообразно использовать находящий в наборе блоков Basic элемент Time-Delay Switch. Изображение ключа на схеме и окно для задания параметров ключа приведено на рисунке 3.2. В окне параметров ключа указываются:– время, когда ключ этем закрыт – Time on; время, когда ключ открыт – Time off.

	Time-Delay Switch Properties
	Label Value Fault Display
° œ	Time on (TON): 0.1 s 🛓 Time off (TOFF): 0 s 🛓
	ОК Отмена

Рис. 3.2. Элемент Time-Delay Switch и окно для задания его параметров

После создания схемы и задания параметров для анализа переходных процессов необходимо нажать кнопку подтверждения ввода «Accept» и выполнить моделирование нажав кнопку «Simulate». После моделирования на экран результаты анализа в редакторе «Analysis Graphs» (рис. 3.3).

Рис. 3.3. Окно вывода результатов расчета переходного процесса

Для повышения наглядности изображения переходного процесса можно развернуть график на полный экран и нанести сетку. Точное измерение параметров переходного процесса можно производить с помощью двух перемещающихся курсоров, при этом на экран выводиться таблица значений координат, их производных и приращений.

Список литературы

- Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. М.: Высш. шк., 1996. 638 с.
- 2. Карлащук В. Электронная лаборатория на IBM PC. Том 1. Моделирование элементов аналоговых систем. М.: Изд-во «Солон-пресс», 2006. 672 с.