Оглавление

1. Основные положения теории	2
2. Предварительная подготовка	5
3. Задание на проведение эксперимента	5
4. Обработка результатов экспериментов	11
5. Вопросы для самопроверки и подготовке к защите работы	12
ЛИТЕРАТУРА	13

Цель работы – изучение экспериментальных методов исследования частотных свойств электрических цепей (передаточных функций).

1. Основные положения теории

Основной задачей анализа частотных свойств электрической цепи является определение реакции цепи на заданное внешнее воздействие, которое часто называют входным воздействием. Передаточную функцию цепи в общем случае определяют следующим образом:

$$\dot{W}(j\omega) = \frac{\dot{A}_2(j\omega)}{\dot{A}_1(j\omega)} = \frac{A_2(\omega)}{A_1(\omega)} \frac{e^{j\psi_2(\omega)}}{e^{j\psi_1(\omega)}} = \frac{A_2(\omega)}{A_1(\omega)} e^{j\varphi(\omega)} = K(\omega) \cdot e^{j\varphi(\omega)},$$

где $\dot{A}_{2}(j\omega)$ – комплексная амплитуда отклика цепи (напряжения или тока);

 $\dot{A}_{\rm I}(j\omega)$ – комплексная амплитуда входного воздействия (напряжения или тока).

Передаточная функция $\dot{W}(j\omega)$ может быть безразмерной (входное воздействие и анализируемый отклик – либо $\dot{U}_1(j\omega)$ и $\dot{U}_2(j\omega)$, либо $\dot{I}_1(j\omega)$ и $\dot{I}_2(j\omega)$). В случае, когда сопоставляются $\dot{U}_1(j\omega)$ и $\dot{I}_2(j\omega)$, $\dot{W}(j\omega)$ имеет размерность проводимости, а в случае, когда сопоставляются $\dot{I}_1(j\omega)$ и $\dot{U}_2(j\omega)$, $\dot{W}(j\omega)$ имеет размерность сопротивления.

Модуль $K(\omega)$ безразмерной комплексной передаточной функции $\dot{W}(j\omega)$ характеризует отношение амплитуд отклика и воздействия и носит название амплитудночастотной характеристики (AЧX) цепи. Аргумент этой комплексной передаточной функции $\varphi(\omega)$ определяется разностью фаз сигналов отклика и воздействия и называется фазочастотной характеристикой (Φ ЧX) цепи.

Внимание! АЧХ и ФЧХ линейных цепей не зависят от амплитуды входного воздействия, поскольку параметры элементов линейных цепей не зависят от амплитуд приложенных напряжений и протекающих через них токов.

АЧХ и ФЧХ представляют в виде графиков, по осям абсцисс которых откладывают значения частоты, а по осям ординат — значения модуля комплексной передаточной

функции при построении графика АЧХ или разность фаз сигналов отклика и воздействия при построении графика ФЧХ.

При анализе АЧХ цепей часто используют так называемые схемы замещения для низких частот (НЧ) и высоких частот (ВЧ). Поскольку при $\omega \to 0$ $X_C \to \infty$ и $X_L \to 0$, а при $\omega \to \infty$ $X_C \to 0$ и $X_L \to \infty$, вместо соответствующих элементов – емкости и индуктивности – в исходной принципиальной схеме изображают перемычку или показывают разрыв цепи. Такой подход позволяет качественно анализировать вид АЧХ, не прибегая к расчетам (таблица 1).

Наглядное представление о фазовых соотношениях в областях НЧ и ВЧ дают векторные диаграммы, которые строятся для соответствующих схем замещения.

Таблица 1 – Применение методики схем замещения для анализа АЧХ цепи

Схема электрическая цепи	Схема замещения цепи	Схема замещения цепи
Слеми электри геский цени	на НЧ, $\omega \to 0$	на ВЧ, $\omega \to \infty$
$\dot{U}_1 \bigvee_{C} \frac{\dot{I}_1}{\dot{I}_2} \downarrow_{C} \downarrow_{C} \dot{U}_2$	$\dot{U}_{1} \bigvee_{{\longleftarrow} {\longleftarrow} {\longrightarrow} {\longleftarrow} {\longrightarrow} {\longleftarrow} {\longleftarrow} {\longrightarrow} {\longleftarrow} {\longrightarrow} $	$\dot{U}_1 \downarrow \stackrel{R_1}{\longleftarrow} \stackrel{L}{\longleftarrow} \downarrow \dot{U}_2$
$W(j\omega) = \frac{Z_3}{Z_1 + Z_2 + Z_3};$ $\dot{Z}_1 = R_1 \qquad Z_3 = \frac{R_2 \cdot \frac{1}{j\omega C}}{R_2 + \frac{1}{j\omega C}}$	$ W(j\omega) \to \frac{R_2}{R_1 + R_2}$	$ W(j\omega) \to 0$
$Z_2 = j\omega L$		

Эквивалентная схема замещения НЧ $(\omega \to 0)$ содержит последовательно включенные активные сопротивления R_1 и R_2 , поэтому при $\omega \to 0$ $\varphi(\omega) \to 0$. Этот вывод подтверждает и векторная диаграмма, представленная на рисунке 1, а.

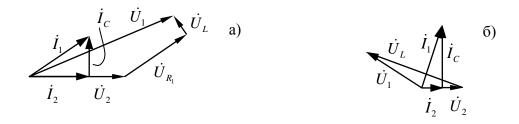


Рисунок 1 – Векторные диаграммы цепи в области НЧ (а) и в области ВЧ (б)

В соответствии со 2 законом Кирхгофа записываем уравнение

$$\dot{U}_1 = \dot{I}_1 R_1 + \dot{I}_1 j X_L + \dot{U}_2$$
.

Направив вектор тока \dot{I}_2 , протекающего через резистор R_2 , горизонтально, построим вектор выходного напряжения \dot{U}_2 , который совпадает по направлению с вектором тока \dot{I}_2 , т.к. $\dot{U}_2=\dot{I}_2R_2$. Ток \dot{I}_C , протекающий через емкость C, мал ($X_C\to\infty$ при $\omega\to0$), а его вектор составляет угол $\pi/2$ с вектором напряжения \dot{U}_C ($\dot{U}_C=\dot{U}_{R_2}=\dot{U}_2$, так как элементы C и R_2 соединены параллельно). Входной ток \dot{I}_1 , протекающий последовательно через элементы R_1 и L, равен сумме токов, протекающих через параллельно соединенные элементы C и R_2 : $\dot{I}_1=\dot{I}_2+\dot{I}_C$. Напряжение \dot{U}_{R_1} на активном сопротивлении R_1 всегда совпадает по фазе с протекающим через него током

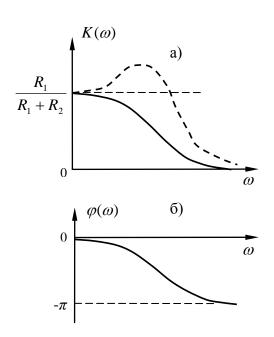


Рисунок 2 – АЧХ (а) и ФЧХ (б) анализируемой цепи в областях НЧ и ВЧ

(в рассматриваемой схеме — с током \dot{I}_1), поэтому векторы \dot{I}_1 и \dot{U}_{R_1} сонаправлены. Вектор напряжения на индуктивности \dot{U}_L составляет угол $\pi/2$ с протекающим через нее током \dot{I}_1 . Вектор входного напряжения \dot{U}_1 находится как сумма векторов напряжений \dot{U}_2 , \dot{U}_{R_1} и \dot{U}_L . Видно, что угол между векторами напряжений U_1 и U_2 будет стремиться к нулевому значению при уменьшении ω , поскольку будут уменьшаться составляющие \dot{I}_C и \dot{U}_L .

В области ВЧ ($\omega \to \infty$) векторная диаграмма существенно изменяется – рисунок 1,а. Ток \dot{I}_C ,

протекающий через емкость C, значительно превышает ток, протекающий через резистор R_2 , так как $X_C \to 0$ при $\omega \to \infty$. Напряжение \dot{U}_L велико даже при небольшом токе \dot{I}_1 , так как $X_L \to \infty$ при $\omega \to \infty$. Поскольку \dot{U}_L оказывается много больше, чем \dot{U}_{R_1} , при построении вектора входного напряжения вектором \dot{U}_{R_1} можно пренебречь. Видно, что угол между векторами напряжений \dot{U}_1 и \dot{U}_2 будет стремиться к значению $-\pi$ при $\omega \to \infty$.

На рисунке 2 представлены АЧХ и ФЧХ, вид которых определен качественно в соответствии с изложенной методикой анализа. При $R_1=R_2$ K(0)=0,5. Вид АЧХ существенно зависит от параметров L, C, R_1 и R_2 . При малых значениях R_1 и R_2 возможно возникновение резонанса (пунктирная кривая на рисунке 2, a).

2. Предварительная подготовка

На рисунке 3 изображена эквивалентная схема Γ -образного четырёхполюсника. Начертить четыре электрические принципиальные схемы таких четырёхполюсников, каждый из которых в своем составе имеет реактивное сопротивление (L или C) и активное

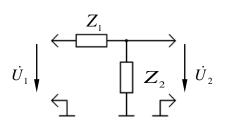


Рисунок 3 – Эквивалентная схема Г-образного четырехполюсника

сопротивление R. Для каждой цепи записать комплексную передаточную функцию по напряжению

$$W(j\omega) = \frac{\dot{U}_2(j\omega)}{\dot{U}_2(j\omega)} = \frac{Z_2}{Z_1 + Z_2},$$

после чего перейти к показательной форме записи, используя известное представление

$$F = \frac{A + jB}{C + jD} = \frac{\sqrt{A^2 + B^2}e^{j\arctan\left(\frac{B}{A}\right)}}{\sqrt{C^2 + D^2}e^{j\arctan\left(\frac{D}{C}\right)}} = \sqrt{\frac{A^2 + B^2}{C^2 + D^2}}e^{j\left(\arctan\left(\frac{B}{A}\right) - \arctan\left(\frac{D}{C}\right)\right)},$$

и найти выражения для $K(\omega)$ и $\varphi(\omega)$. Проанализировать поведение полученных функций АЧХ и ФЧХ при $\omega \to 0$ и $\omega \to \infty$, а затем построить графики этих функций.

3. Задание на проведение эксперимента

<u>Задание 1</u> Постройте АЧХ и ФЧХ двух модификаций Γ -образного L-R звена (в одном случае к общему проводу будет подключено активное сопротивление, в другом –

реактивное). В соответствии со схемой электрической принципиальной, пользуясь монтажной схемой (рисунок 4), соберите электрическую цепь и подключите ее к выходу генератора гармонических колебаний G2. Затем, в соответствии со схемой электрической принципиальной, пользуясь монтажной схемой (рисунок 5), подключите измерительные приборы – вольтметр V1 и фазометр.

Поскольку в генераторе гармонических колебаний G2, также как и во всех приборах такого типа, устанавливается величина линейной частоты колебаний f, построение графиков AЧX и ФЧX будем выполнять, откладывая по осям абсцисс значения f, а не ω , существенно экономя время на вычислениях соответствующих значений ω . При этом общий вид графиков АЧX И ФЧX не изменяется.

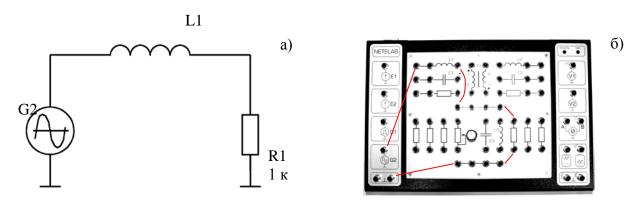


Рисунок 4 — Схемы электрическая принципиальная (а) и монтажная (б) L-R звена, у которого к общему проводу подключено активное сопротивление.

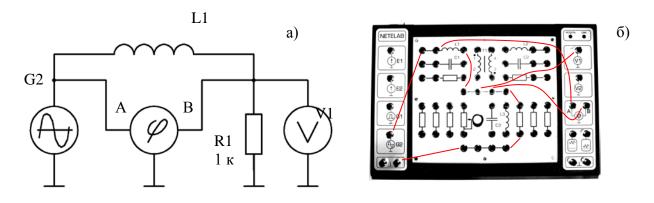


Рисунок 5 — Схемы электрическая принципиальная (а) и монтажная (б) для измерения AYX и ΦYX L—R звена, у которого к общему проводу подключено активное сопротивление

Установите амплитуду колебаний на выходе генератора гармонических колебаний G2 4,24 В. Этой амплитуде соответствует действующее напряжение на выходе генератора 3 В. Устанавливая частоту гармонических колебаний генератора в соответствии с указанными в первой колонке таблицы 2 значениями, измерьте величину действующего значения напряжения на выходе L–R звена и разность фаз между входным выходным напряжениями. Результаты измерений занесите в таблицу, после чего рассчитайте значения K(f) для каждого значения частоты и постройте графики K(f)и $\varphi(f)$.

Условия проведения эксперимента $Z_{1} = j\omega L_{1} + R_{L_{1}}$ I_{1}			
$U_1 = 3$	$U_{1} = 3 \mathbf{B} \dot{U}_{1} \bigvee Z_{2} = R_{1} \qquad \dot{U}_{2}$ $L_{1} = \mathbf{M} \Gamma \mathbf{H} \qquad \dot{\nabla} \mathbf{H}$		
$L_1 =$	$= M\Gamma H \stackrel{\bigvee Z_2}{\hookrightarrow} \Gamma_1 {\longrightarrow} \stackrel{\bigvee}{\longrightarrow}$		
$R_{L_1} =$	Ом		
$R_1 = 1000$	$R_1 = 1000 \text{Om}$		
f , к Γ ц	$U_{R1}(f)$,	$\varphi(f)$,	K(f)
	В	град.	(расчет)
0,2			
0,4			
0,8			
1,6			
3,2			
6,4			
12,8			
25,6			

Исследуйте АЧХ и ФЧХ L–R звена, у которого к общему проводу подключено реактивное сопротивление (рисунок 6). Соберите цепь, подключите измерительные приборы (рисунок 7) и выполните измерения. Результаты измерений занесите в таблицу 3, рассчитайте K(f) и постройте графики K(f) и $\varphi(f)$.

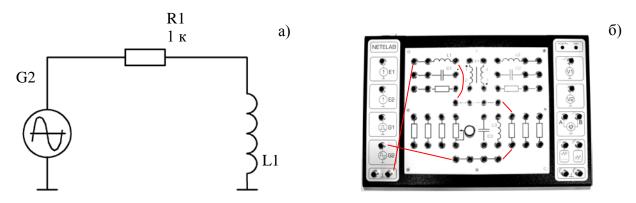


Рисунок 6 — Схемы электрическая принципиальная (а) и монтажная (б) L—R звена, у которого к общему проводу подключено реактивное сопротивление

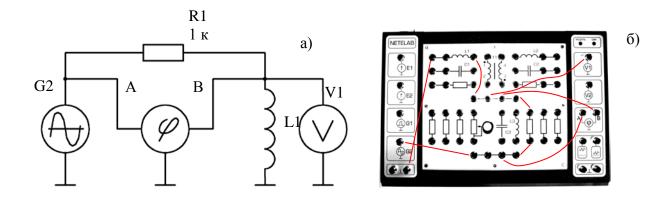


Рисунок 7 — Схемы электрическая принципиальная (a) и монтажная (б) для измерения АЧХ и Φ ЧХ L—R звена, у которого к общему проводу подключено реактивное сопротивление

Таблица 3 – Результаты измерения АЧХ и ФЧХ

Обратите внимание, что в области НЧ экспериментально зарегистрированная ФЧХ заметно отличается от расчетной. Это связано с тем, что катушка индуктивности L1 не является идеальным элементом (который называют просто индуктивностью L) — она обладает внутренним активным сопротивлением R_L .

Это сопротивление представляет собой сопротивление провода, из которого изготовлена обмотка катушки индуктивности. Чем меньше диаметр провода, тем больше величина R_L . При увеличении диаметра провода R_L уменьшается, но при этом обычно значение индуктивности также уменьшается, поскольку на катушке не удается разместить такое же число витков провода.

Условия проведения эксперимента			
	$Z_1 = R_1$		
	$\dot{U}_1 \stackrel{\dot{I}_1}{\longleftrightarrow} \dot{U}_2$		
$U_1 = 3$	$U_1 = 3$ B $U_2 = i\omega L_1 + R_{L_1}$		
$L_1 =$	$L_1 = M\Gamma_H$ $Z_2 = j\omega L_1 + R_{L_1}$		
R_{L_1} =	$R_{L_1} = OM$		
$R_1 = 100$	$R_1 = 1000 \text{ Om}$		
f , к Γ ц	$U_2(f)$,	$\varphi(f)$,	K(f)
	В	град.	(расчет)
0,2			
0,4			
0,8	0,8		
1,6			
3,2			
6,4			
12,8			

Оглавление

Задание 2 Постройте АЧХ и ФЧХ двух модификаций R–C звена (как и при исследовании R–L звена, в одном случае к общему проводу будет подключено активное сопротивление, в другом — реактивное). В соответствии со схемами, изображенными на рисунке 8, соберите электрическую цепь и подключите измерительные приборы — вольтметр V1 и фазометр.

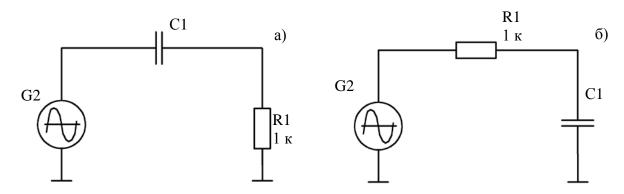


Рисунок 8 – Схемы электрические принципиальные R-C звеньев, у которых к общему проводу подключено активное сопротивление (а) и реактивное сопротивление (б)

Выполните измерения выходного напряжения и разности фаз в соответствии с методикой задания 1, заполните таблицы 4 и 5, рассчитайте значения K(f) и постройте графики АЧХ и ФЧХ для каждого из звеньев.

Таблица 4 – Результаты измерения АЧХ и ФЧХ

Таблица 5 – Результаты измерения АЧХ и ФЧХ

Условия проведения эксперимента			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
f , к Γ ц	$U_2(f)$,	$\varphi(f)$,	K(f)
	В	град.	(расчет)
0,2			
0,4			
0,8			
1,6			
3,2			
6,4			
12,8			
25,6			

Условия проведения эксперимента $U_1 = 3 \text{В} \\ C_1 = \text{мк}\Phi \\ R_1 = 1000 \text{ Om} \qquad \qquad U_1 \bigvee_{j=1}^{j} \dot{U}_2$			
f , к Γ ц	$U_2(f)$,	$\varphi(f)$,	<i>K</i> (<i>f</i>) (расчет)
0,2	D	град.	(pacaci)
0,2			
0,8			
1,6			
3,2			
6,4			
12,8			
25,6			

Задание 3 Использование характериографа, обеспечивающего автоматическое построение на экране графиков АЧХ и ФЧХ облегчает процедуру анализа передаточных функций различных электрических цепей.

В соответствии со схемами, изображенными на рисунке 9, а, соберите электрическую цепь и подключите к ней измерительный канал 1 характериографа (рисунок 9, б). Нажав кнопку, расположенную рядом с полем «РЕЖИМ» экранного меню,

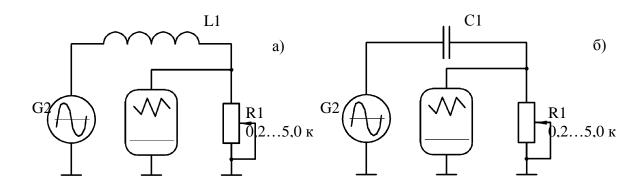


Рисунок 9 – Схемы электрические принципиальные *R-С* и *R-L* звеньев, АЧХ и ФЧХ которых исследуются с помощью характериографа

активизируйте работу характериографа, обеспечивающего построение зависимостей U(f) и $\varphi(f)$. При этом управление частотой генератора G2 блокируется (на индикаторе частоты G2 отображается символ «•»). Выберите диапазон изменения частот генератора G2 (от 0,1 до 10 к Γ ц или от 0,1 до 100 к Γ ц), установите амплитуду колебаний на выходе G2 равной 3 В.

Установите ручку управления переменного резистора R1 в крайнее правое положение (его сопротивление будет максимальным) и нажмите кнопку поля «Пуск» экранного меню. В течение 10 секунд частота генератора G2 будет изменяться в пределах выбранного диапазона, а на экране будут построены AЧХ (пространство под этой кривой заштриховано) и ФЧХ исследуемой цепи.

По окончании процесса измерений (в поле экранного меню снова появится надпись «Пуск») измените величину переменного резистора и снова активизируйте процесс измерения. Наблюдайте качественные изменения АЧХ и ФЧХ звена при изменении

величины переменного сопротивления, зарисуйте несколько реализаций этих характеристик.

Внимание! В процессе выполнения измерений нельзя изменять положение ручки переменного резистора, выполнять какие-либо коммутации элементов схемы или изменять амплитуду гармонических сигналов генератора G2 – в этих случаях результаты измерений будут некорректны.

Внимание! Если по окончании процесса измерения в верхней части экрана появится надпись «ВЕЛИКА АМПЛИТУДА СИГНАЛА», это свидетельствует о некорректности проведенных измерений. В этом случае необходимо уменьшить амплитуду колебаний на выходе генератора G2.

Внимание! Характериограф автоматически определяет корректность вычисления отсчетов Φ ЧХ. При уменьшении уровня сигнала на входе характериографа ошибка оценки отсчетов Φ ЧХ увеличивается и если погрешность измерений превысит 5^0 , часть графика Φ ЧХ не будет отображаться на экране.

4. Обработка результатов экспериментов

Для L–R звена, у которого к общему проводу подключено реактивное сопротивление, рассчитать коэффициент передачи и разность фаз на частоте ω , соответствующей линейной частоте f=0,2 к Γ ц. Полученный результат отобразить на графиках экспериментально определенных AЧX и Φ ЧX этого звена. Сопоставить полученные результаты.

На всех графиках пунктирной линией достроить кривые в области НЧ и ВЧ, используя результаты п. 2 работы.

5. Вопросы для самопроверки и подготовке к защите работы

- 5.1 Какие сигналы называют гармоническими?
- 5.2 Как связаны частота f, круговая частота ω и период колебаний T?
- 5.3 Что такое амплитудное и что такое действующее значения напряжения гармонического сигнала? Как они связаны?
- 5.4 Как зависят от частоты активные и реактивные сопротивления цепи?
- 5.5 Как рассчитать комплексное сопротивление участка цепи?
 Как связаны полное комплексное сопротивление и полное сопротивление?
- 5.6 Что такое комплексная передаточная функция? Какой смысл имеют её модуль и какой ее аргумент?
- 5.7 Что характеризуют АЧХ и ФЧХ цепи?
- 5.8 Как сдвинуты по фазе ток и напряжение на пассивных элементах электрической цепи R, L и C?
- 5.9 На чем основан качественный расчет АЧХ цепи в областях НЧ и ВЧ?

ЛИТЕРАТУРА

- 1. Электрические измерения. Средства и методы измерений (общий курс) / Дьяченко К.П., Зорин Д.И., Новицкий П.В. и др. Под ред. Е.Г. Шрамкова. М.: Высш. школа, 1972. 520 с.
- 2. Атабеков Г.И. Линейные электрические цепи. М.: Энергия, 1978. 591 с.
- 3. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. М.: Высш. школа, 1996. 638 с.
- 4. Теоретические основы электротехники / Демирчян К.С., Нейман Л.Р., Коровкин Н.В. [и др.] Т. 1. С.-Пб.: Питер, 2009. 432 с.